This book demonstrates the need for and the value of interdisciplinary research in addressing important societal challenges associated with the widespread use of algorithmic decision-making. Algorithms are increasingly being used to make decisions in various domains such as criminal justice, medicine, and employment. While algorithmic tools have the potential to make decision-making more accurate, consistent, and transparent, they pose serious challenges to societal interests. For example, they can perpetuate discrimination, cause representational harm, and deny opportunities.
The Societal Impacts of Algorithmic Decision-Making presents several contributions to the growing body of literature that seeks to respond to these challenges, drawing on techniques and insights from computer science, economics, and law. The author develops tools and frameworks to characterize the impacts of decision-making and incorporates models of behavior to reason about decision-making in complex environments. These technical insights are leveraged to deepen the qualitative understanding of the impacts of algorithms on problem domains including employment and lending.
The social harms of algorithmic decision-making are far from being solved. While easy solutions are not presented here, there are actionable insights for those who seek to deploy algorithms responsibly. The research presented within this book will hopefully contribute to broader efforts to safeguard societal values while still taking advantage of the promise of algorithmic decision-making.
Book Downloads
Chapters
- Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. 2011. Improved algorithms for linear stochastic bandits. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Vol. 24. Curran Associates. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf.Google Scholar
- R. Abebe, S. Barocas, J. Kleinberg, K. Levy, M. Raghavan, and D. G. Robinson. 2020. Roles for computing in social change. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. ACM, 252–260. DOI: .Google ScholarDigital Library
- A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire. 2014. Taming the monster: A fast and simple algorithm for contextual bandits. In Proceedings of the 31st International Conference on Machine Learning (ICML), Vol. 32. PMLR, 1638–1646. https://proceedings.mlr.press/v32/agarwalb14.html.Google Scholar
- A. Agarwal, S. Bird, M. Cozowicz, M. Dudik, J. Langford, L. Li, L. Hoang, D. Melamed, S. Sen, R. Schapire, and A. Slivkins. 2016. Multiworld Testing: A System for Experimentation, Learning, and Decision-Making. A white paper, https://github.com/Microsoft/mwt-ds/raw/master/images/MWT-WhitePaper.pdf.Google Scholar
- A. Agarwal, S. Bird, M. Cozowicz, L. Hoang, J. Langford, S. Lee, J. Li, D. Melamed, G. Oshri, O. Ribas, S. Sen, and A. Slivkins. 2017. Making contextual decisions with low technical debt. arXiv:1606.03966. DOI: .Google ScholarCross Ref
- I. Ajunwa. 2020. The paradox of automation as anti-bias intervention. Cardozo Law Rev. 41, 1671. DOI: .Google ScholarCross Ref
- I. Ajunwa. 2021. The auditing imperative for automated hiring. Harv. J. Law Technol. 34, 80. DOI: .Google ScholarCross Ref
- T. Alon, M. Dobson, A. D. Procaccia, I. Talgam-Cohen, and J. Tucker-Foltz. 2020. Multiagent evaluation mechanisms. In Proceedings of the Conference on Artificial Intelligence, Vol. 34. AAAI, 1774–1781. DOI: .Google ScholarCross Ref
- R. Alonso and N. Matouschek. 2008. Optimal delegation. Rev. Econ. Stud. 75, 1, 259–293. DOI: .Google ScholarCross Ref
- J. Angwin and J. Larson. 2022. Bias in criminal risk scores is mathematically inevitable, researchers say. Ethics of Data and Analytics. Auerbach Publications, 265–267.Google Scholar
- J. Angwin, J. Larson, S. Mattu, and L. Kirchner. 2022. Machine bias. Ethics of Data and Analytics. Auerbach Publications, 254–264.Google Scholar
- K. J. Arrow. 1963. Uncertainty and the welfare economics of medical care. Am. Econ. Rev. 53, 5, 941–973. http://www.jstor.org/stable/1812044.Google Scholar
- K. J. Arrow. 1968. The economics of moral hazard: Further comment. Am. Econ. Rev. 58, 3, 537–539. http://www.jstor.org/stable/1813786.Google Scholar
- Article 29 Data Protection Working Party. 2017. Guidelines on Automated Individual Decision-Making and Profiling for the Purposes of Regulation 2016/679. https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=612053.Google Scholar
- P. Auer. 2002. Using confidence bounds for exploitation–exploration trade-offs. J. Mach. Learn. Res. 3, 397–422.Google Scholar
- P. Auer, N. Cesa-Bianchi, and P. Fischer. 2002. Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47, 2–3, 235–256. DOI: .Google ScholarDigital Library
- H. Azari Soufiani, D. C. Parkes, and L. Xia. 2012. Random utility theory for social choice. In Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12). Curran Associates, 126–134.Google Scholar
- H. Azari Soufiani, H. Diao, Z. Lai, and D. C. Parkes. 2013. Generalized random utility models with multiple types. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2013), Vol. 26. Curran Associates, 73–81.Google Scholar
- L. Baker, D. Weisberger, D. Diamond, M. Ward, and J. Naso. 2018. audit-AI. Retrieved from https://github.com/pymetrics/audit-ai.Google Scholar
- J. M. Balkin. 2015. Information fiduciaries and the First Amendment. Univ. Calif. Davis Law Rev. 49, 1183–1234.Google Scholar
- I. Ball. 2020. Scoring strategic agents. Working paper. arXiv:1909.01888. DOI: .Google ScholarCross Ref
- J. Bambauer and T. Zarsky. 2018. The algorithm game. Notre Dame Law Rev. 94, 1, 1–48.Google Scholar
- L. Baritz. 1960. The Servants of Power: A History of the Use of Social Science in American Industry. Wesleyan University Press.Google Scholar
- S. Barocas and A. D. Selbst. 2016. Big data’s disparate impact. Calif. Law Rev. 104, 671–732. DOI: .Google ScholarCross Ref
- S. Barocas, A. D. Selbst, and M. Raghavan. 2020. The hidden assumptions behind counterfactual explanations and principal reasons. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* ’20). ACM, 80–89. DOI: .Google ScholarDigital Library
- L. F. Barrett, R. Adolphs, S. Marsella, A. M. Martinez, and S. D. Pollak. 2019. Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements. Psychol. Sci. Public Interest 20, 1, 1–68. DOI: .Google ScholarCross Ref
- H. Bastani, M. Bayati, and K. Khosravi. 2020. Mostly exploration-free algorithms for contextual bandits. Manage. Sci. 67, 3, 1329–1349. DOI: .Google ScholarDigital Library
- Y. Bechavod, C. Jung, and Z. S. Wu. 2020. Metric-free individual fairness in online learning. In Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS’20). Curran Associates, 11214–11225.Google Scholar
- J. Beel, B. Gipp, and E. Wilde. 2009. Academic search engine optimization (ASEO) optimizing scholarly literature for Google Scholar & Co. J. Sch. Publ. 41, 2, 176–190. DOI: .Google ScholarCross Ref
- S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. 2010. A theory of learning from different domains. Mach. Learn. 79, 1–2, 151–175. DOI: .Google ScholarDigital Library
- M. Bendick, Jr. and A. P. Nunes. 2012. Developing the research basis for controlling bias in hiring. J. Soc. Issues 68, 2, 238–262. DOI: .Google ScholarCross Ref
- M. Bendick, Jr., C. W. Jackson, and J. H. Romero. 1997. Employment discrimination against older workers: An experimental study of hiring practices. J. Aging Soc. Policy 8, 4, 25–46. DOI: .Google ScholarCross Ref
- J. R. Bent. 2020. Is algorithmic affirmative action legal? Georgetown Law J. 108, 4, 803.Google Scholar
- D. Bergemann and S. Morris. 2019. Information design: A unified perspective. J. Econ. Lit. 57, 1, 44–95. DOI: .Google ScholarCross Ref
- R. Berk. 2016. A primer on fairness in criminal justice risk assessments. Criminologist 41, 6, 6–9.Google Scholar
- R. Berk, H. Heidari, S. Jabbari, M. Kearns, and A. Roth. 2018. Fairness in criminal justice risk assessments: The state of the art. Sociol Methods Res. 50, 1, 3–44. DOI: .Google ScholarCross Ref
- M. Bertrand and S. Mullainathan. 2004. Are Emily and Greg more employable than Lakisha and Jamal? A field experiment on labor market discrimination. Am. Econ. Rev. 94, 4, 991–1013. DOI: .Google ScholarCross Ref
- D. A. Biddle. 2008. Are the uniform guidelines outdated? Federal guidelines, professional standards, and validity generalization (VG). Ind. Organ. Psychol. 45 4, 17–23.Google Scholar
- A. Bietti, A. Agarwal, and J. Langford. 2018. A contextual bandit bake-off. J. Mach. Learn. Res. 22, 1, 5928–5976.Google Scholar
- S. Bird, S. Barocas, K. Crawford, F. Diaz, and H. Wallach. 2016. Exploring or Exploiting? Social and Ethical Implications of Autonomous Experimentation in AI. Available at SSRN: https://ssrn.com/abstract=2846909, also appeared at the Workshop on Fairness, Accountability, and Transparency in Machine Learning.Google Scholar
- K. P. Birman and F. B. Schneider. 2009. The monoculture risk put into context. IEEE Secur. Priv. 7, 1, 14–17. DOI: .Google ScholarDigital Library
- J. Blass. 2019. Algorithmic advertising discrimination. Northwest. Univ. Law Rev. 114, 2, 415–467.Google Scholar
- H. D. Block and J. Marschak. 1960. Random orderings and stochastic theories of responses. In I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, and H. B. Mann (Eds.), Contributions to Probability and Statistics. Stanford University Press, 97–132.Google Scholar
- M. Bogen and A. Rieke. 2018. Help Wanted: An Exploration of Hiring Algorithms, Equity, and Bias. Technical report, Upturn. https://www.upturn.org/static/reports/2018/hiring-algorithms/files/Upturn%20–%20Help%20Wanted%20-%20An%20Exploration%20of%20Hiring%20Algorithms,%20Equity%20and%20Bias.pdf.Google Scholar
- I. Bohnet, A. van Geen, and M. Bazerman. 2016. When performance trumps gender bias: Joint vs. separate evaluation. Manage. Sci. 62, 5, 1225–1234. DOI: .Google ScholarDigital Library
- R. Boleslavsky and K. Kim. 2018. Bayesian Persuasion and Moral Hazard. Available at SSRN 2913669. DOI: .Google ScholarCross Ref
- S. Bornstein. 2018. Antidiscriminatory algorithms. Ala. Law Rev. 70, 2, 519.Google Scholar
- D. Braess. 1968. Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung 12, 1, 258–268. DOI: .Google ScholarCross Ref
- M. Braverman and E. Mossel. 2009. Sorting from noisy information. arXiv:0910.1191. DOI: .Google ScholarCross Ref
- M. Brkan. 2019. Do algorithms rule the world? Algorithmic decision-making and data protection in the framework of the GDPR and beyond. Int. J. Law Inf. Technol. 27, 2, 91–121. DOI: .Google ScholarCross Ref
- M. Brückner and T. Scheffer. 2011. Stackelberg games for adversarial prediction problems. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’11). ACM, 547–555. DOI: .Google ScholarDigital Library
- S. Bubeck and N. Cesa-Bianchi. 2012. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Found. Trends Mach. Learn. 5, 1, 1–122. DOI: .Google ScholarCross Ref
- J. Buolamwini and T. Gebru. 2018. Gender shades: Intersectional accuracy disparities in commercial gender classification. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency. PMLR, 77–91.Google Scholar
- T. Calders and S. Verwer. 2012. Three naive Bayes approaches for discrimination-free classification. Data Min. Knowl. Discov. 21, 277–292. DOI: .Google ScholarDigital Library
- California State Legislature. 1959. Fair Employment and Housing Act.Google Scholar
- G. Çapan, Ö. Bozal, Ý. Gündoğdu, and A. T. Cemgil. 2020. Towards fair personalization by avoiding feedback loops. arXiv:2012.12862. DOI: .Google ScholarCross Ref
- G. Carroll. 2015. Robustness and linear contracts. Am. Econ. Rev. 105, 2, 536–563. DOI: .Google ScholarCross Ref
- R. Caruana, S. Lundberg, M. T. Ribeiro, H. Nori, and S. Jenkins. 2020. Intelligible and explainable machine learning: Best practices and practical challenges. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 3511–3512. DOI: .Google ScholarDigital Library
- D. V. Carvalho, E. M. Pereira, and J. S. Cardoso. 2019. Machine learning interpretability: A survey on methods and metrics. Electronics 8, 8, 832. DOI: .Google ScholarCross Ref
- B. Casey, A. Farhangi, and R. Vogl. 2019. Rethinking explainable machines: The GDPR’s “right to explanation” debate and the rise of algorithmic audits in enterprise. Berkeley Technol. Law J. 34, 1, 143–188. DOI: .Google ScholarCross Ref
- M. Cavicchia. 2015. How to fight implicit bias? With conscious thought, diversity expert tells NABE. American Bar Association: Bar Leader 40, 1.Google Scholar
- L. E. Celis and N. K. Vishnoi. 2017. Fair personalization. arXiv:1707.02260, also appeared at the Workshop on Fairness, Accountability, and Transparency in Machine Learning. DOI: .Google ScholarCross Ref
- L. E. Celis, D. Straszak, and N. K. Vishnoi. 2018. Ranking with fairness constraints. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), July 9–13, 2018, Prague, Czech Republic. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 28:1–28:15. DOI: .Google ScholarCross Ref
- T. Chamorro-Prezumic and R. Akhtar. 2019. Should companies use AI to assess job candidates. Harv. Bus. Rev. https://hbr.org/2019/05/should-companies-use-ai-to-assess-job-candidates.Google Scholar
- T. Chamorro-Premuzic, D. Winsborough, R. A. Sherman, and R. Hogan. 2016. New talent signals: Shiny new objects or a brave new world? Ind. Organ. Psychol. 9, 3, 621–640. DOI: .Google ScholarCross Ref
- V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. 2012. The convex geometry of linear inverse problems. Found. Comput. Math. 12, 6, 805–849. DOI: .Google ScholarDigital Library
- Y.-K. Che and J. Hörner. 2018. Recommender systems as mechanisms for social learning. Q. J. Econ. 133, 2, 871–925. DOI: .Google ScholarCross Ref
- Y. Chen, C. Podimata, A. D. Procaccia, and N. Shah. 2018. Strategyproof linear regression in high dimensions. In Proceedings of the 2018 ACM Conference on Economics and Computation (EC ’18). ACM, 9–26. DOI: .Google ScholarDigital Library
- S. N. S. Cheung. 1969. The Theory of Share Tenancy. Arcadia Press.Google Scholar
- S. Chiappa. 2019. Path-specific counterfactual fairness. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. AAAI Press, 7801–7808. DOI: .Google ScholarDigital Library
- A. Chouldechova. 2017. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big Data 5, 2, 153–163. DOI: .Google ScholarCross Ref
- A. Chouldechova, D. Benavides-Prado, O. Fialko, and R. Vaithianathan. 2018. A case study of algorithm-assisted decision making in child maltreatment hotline screening decisions. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency, Vol. 18. PMLR, 134–148.Google Scholar
- W. Chu, L. Li, L. Reyzin, and R. E. Schapire. 2011. Contextual bandits with linear payoff functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS), Vol. 15. PMLR, 208–214.Google Scholar
- D. K. Citron and F. Pasquale. 2014. The scored society: Due process for automated predictions. Wash. Law Rev. 89, 1.Google Scholar
- A. Clauset, C. R. Shalizi, and M. E. J. Newman. 2009. Power-law distributions in empirical data. SIAM Rev. 51, 4, 661–703. DOI: .Google ScholarDigital Library
- S. Coate and G. C. Loury. 1993. Will affirmative-action policies eliminate negative stereotypes? Am. Econ. Rev. 83, 5, 1220–1240.Google Scholar
- I. N. Cofone. 2018. Algorithmic discrimination is an information problem. Hastings Law J. 70, 1389.Google Scholar
- J. E. Cohen. 2012a. Configuring the Networked Self: Law, Code, and the Play of Everyday Practice. Yale University Press.Google Scholar
- J. E. Cohen. 2012b. What privacy is for. Harv. Law Rev. 126, 7, 1904–1933.Google Scholar
- R. M. Cohn. 1979a. Statistical laws and the use of statistics in law: A rejoinder to Professor Shoben. Indiana Law J. 55, 3, 537.Google Scholar
- R. M. Cohn. 1979b. On the use of statistics in employment discrimination cases. Indiana Law J. 55, 3, 493.Google Scholar
- B. W. Collins. 2007. Tackling unconscious bias in hiring practices: The plight of the Rooney Rule. N. Y. Univ. Law Rev. 82, 3, 870.Google Scholar
- J. D. Cook. 2009. Upper and Lower Bounds for the Normal Distribution Function. https://www.johndcook.com/blog/norm-dist-bounds/.Google Scholar
- S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq. 2017. Algorithmic decision making and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’17). ACM, 797–806. DOI: .Google ScholarDigital Library
- Covington and Burling. 13 June. 2017. Recommendations to Uber. https://conferences.law.stanford.edu/vcs/wp-content/uploads/sites/11/2017/11/Uber-Report.pdf. Archived version: http://web.archive.org/web/20230607183413/https://conferences.law.stanford.edu/vcs/wp-content/uploads/sites/11/2017/11/Uber-Report.pdf.Google Scholar
- B. Cowgill. 2018. Bias and productivity in humans and machines. Columbia Business School, Columbia University, 29. DOI: .Google ScholarCross Ref
- H. Cravens. 1978. The Triumph of Evolution: The Heredity–Environment Controversy, 1900–1941. Johns Hopkins University Press.Google Scholar
- K. Crawford. 2017. The trouble with bias. In Proceedings of the Conference on Neural Information Processing Systems, invited speaker. https://blog.revolutionanalytics.com/2017/12/the-trouble-with-bias-by-kate-crawford.html.Google Scholar
- C. S. Crowson, E. J. Atkinson, and T. M. Therneau. 2016. Assessing calibration of prognostic risk scores. Stat. Methods Med. Res. 25, 4, 1692–1706. DOI: .Google ScholarCross Ref
- R. Cummings, S. Ioannidis, and K. Ligett. 2015. Truthful linear regression. In Proceedings of the 28th Conference on Learning Theory, COLT 2015, Vol. 40. PMLR, 448–483.Google Scholar
- N. N. Dalvi, P. M. Domingos, Mausam, S. K. Sanghai, and D. Verma. 2004. Adversarial classification. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 99–108. DOI: .Google ScholarDigital Library
- H. E. Daniels. 1950. Rank correlation and population models. J. R. Stat. Soc. Ser. B (Methodological) 12, 2, 171–181. DOI: .Google ScholarCross Ref
- S. Das and Z. Li. 2014. The role of common and private signals in two-sided matching with interviews. In Proceedings of the International Conference on Web and Internet Economics. Springer, Vol. 8877: Lecture Notes in Computer Science. Springer, 492–497. DOI: .Google ScholarCross Ref
- S. Dasgupta and A. Gupta. 2003. An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithms 22, 1, 60–65. DOI: .Google ScholarDigital Library
- A. Datta, M. C. Tschantz, and A. Datta. 2015. Automated experiments on ad privacy settings: A tale of opacity, choice, and discrimination. In Proc. Priv. Enhanc. Technol. 1, 92–112. DOI: .Google ScholarCross Ref
- H. A. David and H. N. Nagaraja. 2005. Basic Distribution Theory. John Wiley & Sons, 9–32. ISBN 9780471722168.Google Scholar
- H. Davis. 2006. Search Engine Optimization. O’Reilly Media.Google Scholar
- A. P. Dawid. 1982. The well-calibrated Bayesian. J. Am. Stat. Assoc. 77, 379, 605–610. DOI: .Google ScholarCross Ref
- M. De-Arteaga, R. Fogliato, and A. Chouldechova. 2020. A case for humans-in-the-loop: Decisions in the presence of erroneous algorithmic scores. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20). ACM, 1–12. DOI: .Google ScholarDigital Library
- M. De-Arteaga, A. Dubrawski, and A. Chouldechova. 2021. Leveraging expert consistency to improve algorithmic decision support. arXiv:2101.09648. DOI: .Google ScholarCross Ref
- O. Dekel, F. Fischer, and A. D. Procaccia. 2010. Incentive compatible regression learning. J. Comput. Syst. Sci. 76, 8, 759–777. DOI: .Google ScholarDigital Library
- A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C. Tu, P. Ting, K. Shanmugam, and P. Das. 2018. Explanations based on the missing: Towards contrastive explanations with pertinent negatives. In Advances in Neural Information Processing Systems, 592–603.Google Scholar
- W. Dieterich, C. Mendoza, and T. Brennan. July. 2016. COMPAS Risk Scales: Demonstrating Accuracy Equity and Predictive Parity. Technical Report. Northpointe. https://go.volarisgroup.com/rs/430-MBX-989/images/%20ProPublica_Commentary_Final_070616.pdf.Google Scholar
- J. Dong, A. Roth, Z. Schutzman, B. Waggoner, and Z. S. Wu. 2018. Strategic classification from revealed preferences. In Proceedings of the 2018 ACM Conference on Economics and Computation (EC ’18). ACM, 55–70. DOI: .Google ScholarDigital Library
- P. H. DuBois. 1970. A History of Psychological Testing. Allyn and Bacon, Boston.Google Scholar
- C. DuBois. 2017. What the NFL can teach Congress about hiring more diverse staffs. FiveThirtyEight.Google Scholar
- C. DuBois and D. W. Schanzenbach. 2017. The Effect of Court-Ordered Hiring Guidelines on Teacher Composition and Student Achievement. Technical Report. National Bureau of Economic Research.Google Scholar
- M. D. Dunnette and W. C. Borman. 1979. Personnel selection and classification systems. Annu. Rev. Psychol. 30, 1, 477–525. DOI: .Google ScholarCross Ref
- C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science (ITCS ’12). ACM, 214–226. DOI: .Google ScholarDigital Library
- H. Edwards and A. J. Storkey. 2016. Censoring representations with an adversary. In Proceedings of the 4th International Conference on Learning Representations (ICLR 2016), San Juan, Puerto Rico, May 2–4, 2016, Conference Track Proceedings.Google Scholar
- L. Edwards and M. Veale. 2017. Slave to the algorithm: Why a right to an explanation is probably not the remedy you are looking for. Duke Law Technol. Rev. 16, 18–74.Google Scholar
- Equal Credit Opportunity Act, Public Law 93-495. 1974. Codified at 15 U.S.C. § 1691, et seq.Google Scholar
- Equal Employment Opportunity Commission. 1978. Uniform guidelines on employee selection procedures. Fed. Regist. 43, 166, 38290–38315.Google Scholar
- V. Eubanks. 2018a. Automating bias. Sci. Am. 319, 5, 68–71. DOI: .Google ScholarCross Ref
- V. Eubanks. 2018b. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin’s Press.Google ScholarDigital Library
- Executive Office of the President. May. 2016. Big Data: A Report on Algorithmic Systems, Opportunity, and Civil Rights. Technical Report.Google Scholar
- Fair Credit Reporting Act, Public Law 91-508. 1970. Codified at 15 U.S.C. § 1681, et seq.Google Scholar
- Federal Register. 1985. 50 Fed. Reg. 10915.Google Scholar
- U. Feige, P. Raghavan, D. Peleg, and E. Upfal. 1994. Computing with noisy information. SIAM J. Comput. 23, 5, 1001–1018. DOI: .Google ScholarDigital Library
- M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian. 2015. Certifying and removing disparate impact. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’15). ACM, 259–268. DOI: .Google ScholarDigital Library
- J. Finocchiaro, R. Maio, F. Monachou, G. K. Patro, M. Raghavan, A.-A. Stoica, and S. Tsirtsis. 2021. Bridging machine learning and mechanism design towards algorithmic fairness. In Proceedings of the 2021 Conference on Fairness, Accountability, and Transparency (FACCT ’21). ACM, 489–503. DOI: .Google ScholarDigital Library
- A. Flores, C. Lowenkamp, and K. Bechtel. September. 2016. False Positives, False Negatives, and False Analyses: A Rejoinder to “Machine Bias: There’s Software used Across the Country to Predict Future Criminals. and it’s Biased Against Blacks.” Technical Report, Crime & Justice Institute. http://www.crj.org/assets/2017/07/9_Machine_bias_rejoinder.pdf.Google Scholar
- Y.-F. Fong and J. Li. 2016. Information revelation in relational contracts. Rev. Econ. Stud. 84, 1, 277–299. DOI: .Google ScholarCross Ref
- D. P. Foster and R. V. Vohra. 1998. Asymptotic calibration. Biometrika 85, 2, 379–390. DOI: .Google ScholarCross Ref
- D. Foust and A. Pressman. 2008. Credit scores: Not-so-magic numbers. Bus. Week 7.Google Scholar
- R. H. Frank. 2000. Why is cost–benefit analysis so controversial? J. Legal Stud. 29, S2, 913–930. DOI: .Google ScholarCross Ref
- P. Frazier, D. Kempe, J. M. Kleinberg, and R. Kleinberg. 2014. Incentivizing exploration. In Proceedings of the Fifteenth ACM Conference on Economics and Computation (EC ‘14). ACM, 5–22. DOI: .Google ScholarDigital Library
- J. Friedman, T. Hastie, and R. Tibshirani. 2001. The Elements of Statistical Learning. Springer, New York.Google Scholar
- J. Fruchterman and J. Melllea. 2018. Expanding Employment Success for People with Disabilities. Technical Report. Benetech.Google Scholar
- R. G. Fryer, Jr. and G. C. Loury. 2013. Valuing diversity. J. Polit. Econ. 121, 4, 747–774. DOI: .Google ScholarCross Ref
- Q. Fu and J. Lu. 2012. Micro foundations of multi-prize lottery contests: A perspective of noisy performance ranking. Soc. Choice Welf. 38, 3, 497–517. DOI: .Google ScholarCross Ref
- H. N. Garb. 1997. Race bias, social class bias, and gender bias in clinical judgment. Clin. Psychol. Sci. Pract. 4, 2, 99–120. DOI: .Google ScholarCross Ref
- S. S. Garr and C. Jackson. 2019. Diversity & Inclusion Technology: The Rise of a Transformative Market. Technical Report. RedThread Research. https://info.mercer.com/rs/521-DEV-513/images/Mercer_DI_Report_Digital.pdf.Google Scholar
- T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. Daumé III, and K. Crawford. 2021. Datasheets for datasets. Commun. ACM 64, 12, 86–92. DOI: .Google ScholarDigital Library
- P. W. Gerhardt. 1916. Scientific selection of employees. Electric Railway J. 47, 21, 943–945.Google Scholar
- S. C. Geyik, S. Ambler, and K. Kenthapadi. 2019. Fairness-aware ranking in search & recommendation systems with application to LinkedIn talent search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’19). ACM, 2221–2231. DOI: .Google ScholarDigital Library
- T. B. Gillis and J. L. Spiess. 2019. Big data and discrimination. Univ. Chic. Law Rev. 86, 2, 459–488.Google Scholar
- L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. 2018. Explaining explanations: An overview of interpretability of machine learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 80–89. DOI: .Google ScholarCross Ref
- K. Goddard, A. Roudsari, and J. C. Wyatt. 2012. Automation bias: A systematic review of frequency, effect mediators, and mitigators. J. Am. Med. Inform. Assoc. 19, 1, 121–127. DOI: .Google ScholarCross Ref
- G. Goh, A. Cotter, M. Gupta, and M. P. Friedlander. 2016. Satisfying real-world goals with dataset constraints. In Advances in Neural Information Processing Systems, Vol. 29. Curran Associates, 2415–2423.Google Scholar
- A. Gong. July. 2016. Ethics for Powerful Algorithms (1 of 4). Medium. https://medium.com/@AbeGong/ethics-for-powerful-algorithms-1-of-3-a060054efd84#.dhsd2ut3i.Google Scholar
- R. M. Grath, L. Costabello, C. L. Van, P. Sweeney, F. Kamiab, Z. Shen, and F. Lecue. 2018. Interpretable credit application predictions with counterfactual explanations. arXiv:1811.05245. DOI: .Google ScholarCross Ref
- B. Green. 2021. Data science as political action: Grounding data science in a politics of justice. J. Soc. Comput. 2, 249–265. DOI: .Google ScholarCross Ref
- A. R. Green, D. R. Carney, D. J. Pallin, L. H. Ngo, K. L. Raymond, L. I. Iezzoni, and M. R. Banaji. 2007. Implicit bias among physicians and its prediction of thrombolysis decisions for black and white patients. J. Gen. Intern. Med. 22, 9, 1231–1238. DOI: .Google ScholarCross Ref
- A. G. Greenwald and M. R. Banaji. 1995. Implicit social cognition: Attitudes, self-esteem, and stereotypes. Psychol. Rev. 102, 1, 4–27. DOI: .Google ScholarCross Ref
- A. G. Greenwald and L. H. Krieger. 2006. Implicit bias: Scientific foundations. Calif. Law Rev. 94, 4, 945–967. DOI: .Google ScholarCross Ref
- J. Grimmett. 2017. Veterinary practitioners—Personal characteristics and professional longevity. VetScript 30, 11, 54–57.Google Scholar
- S. J. Grossman and O. D. Hart. 1983. An analysis of the principal–agent problem. Econometrica 51, 1, 7–45. DOI: .Google ScholarCross Ref
- C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. 2017. On calibration of modern neural networks. In Proceedings of the 34th International Conference on Machine Learning, Vol. 70. PMLR, 1321–1330.Google Scholar
- A. Guo, E. Kamar, J. W. Vaughan, H. Wallach, and M. R. Morris. October. 2019. Toward fairness in AI for people with disabilities: A research roadmap. ACM SIGACCESS Access. Comput. 125. DOI: .Google ScholarDigital Library
- R. A. Guzzo, A. A. Fink, E. King, S. Tonidandel, and R. S. Landis. 2015. Big data recommendations for industrial–organizational psychology: Are we in whoville? Ind. Organ. Psychol. 8, 4, 515–520. DOI: .Google ScholarCross Ref
- N. Haghtalab, N. Immorlica, B. Lucier, and J. Z. Wang. 2020. Maximizing welfare with incentive-aware evaluation mechanisms. In Proceedings of the 29th International Joint Conference on Artificial Intelligence. IJCAI, 160–166Google Scholar
- S. Hajian and J. Domingo-Ferrer. 2013. A methodology for direct and indirect discrimination prevention in data mining. IEEE Trans. Knowl. Data Eng. 25, 7, 1445–1459. DOI: .Google ScholarDigital Library
- P. Hall, W. Phan, and S. Ambati. 2017. Ideas on interpreting machine learning. O’Reilly.Google Scholar
- C. Haney. 1982. Employment tests and employment discrimination: A dissenting psychological opinion. Ind. Relat. Law J. 5, 1, 1. DOI: .Google ScholarCross Ref
- M. Hardt, N. Megiddo, C. H. Papadimitriou, and M. Wootters. 2016a. Strategic classification. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. ACM, 111–122. DOI: .Google ScholarDigital Library
- M. Hardt, E. Price, and S. Nathan. 2016b. Equality of opportunity in supervised learning. In Advances in Neural Information Processing Systems, Vol. 29. Curran Associates, 3323–3331.Google Scholar
- Z. Harned and H. Wallach. 2019. Stretching human laws to apply to machines: The dangers of a “colorblind” computer. Fla. State Univ. Law Rev. 47, 617.Google Scholar
- K. D. Harris, P. Murray, and E. Warren. 2018. Letter to U.S. Equal Employment Opportunity Commission. https://www.scribd.com/embeds/388920670/content#from_embed.Google Scholar
- D. Hellman. 2020. Measuring algorithmic fairness. Va. Law Rev. 106, 4, 811–866.Google Scholar
- L. A. Hendricks, R. Hu, T. Darrell, and Z. Akata. 2018. Generating counterfactual explanations with natural language. arXiv:1806.09809. DOI: .Google ScholarCross Ref
- B. E. Hermalin and M. L. Katz. 1991. Moral hazard and verifiability: The effects of renegotiation in agency. Econometrica 59, 6, 1735–1753. DOI: .Google ScholarCross Ref
- M. Hildebrandt. 2006. Profiling: From data to knowledge. Datenschutz und Datensicherheit-DuD 30, 9, 548–552. DOI: .Google ScholarCross Ref
- B. Holmström. 1999. Managerial incentive problems: A dynamic perspective. Rev. Econ. Stud. 66, 1, 169–182. DOI: .Google ScholarCross Ref
- B. Holmström and P. Milgrom. 1987. Aggregation and linearity in the provision of intertemporal incentives. Econometrica 55, 2, 303–328. DOI: .Google ScholarCross Ref
- B. Holmström and P. Milgrom. 1991. Multitask principal–agent analyses: Incentive contracts, asset ownership, and job design. J. Law Econ. Org. 7, 24–52. DOI: .Google ScholarCross Ref
- J. Hörner and N. S. Lambert. 2020. Motivational ratings. Rev. Econ. Stud. 88, 4, 1892–1935. DOI: .Google ScholarCross Ref
- K. Houser. 2019. Can AI solve the diversity problem in the tech industry? Mitigating noise and bias in employment decision-making. Stanford Technol. Law Rev. 22, 290.Google Scholar
- L. Hu and Y. Chen. 2018. A short-term intervention for long-term fairness in the labor market. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018. IW3C2, 1389–1398. DOI: .Google ScholarDigital Library
- L. Hu, N. Immorlica, and J. W. Vaughan. 2019. The disparate effects of strategic manipulation. In Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* 2019. ACM, 259–268. DOI: .Google ScholarDigital Library
- A. E. Hurley-Hanson and C. M. Giannantonio (Eds.). 2016. Journal of Business Management. Autism in the Workplace, Vol. 22. Chapman University Argyros School of Business and Economics. https://www.chapman.edu/business/_files/journals-and-essays/jbm-editions/jbm-vol-22-no-1-autism-in-the-workplace.pdf.Google Scholar
- B. Hutchinson and M. Mitchell. 2019. 50 years of test (un)fairness: Lessons for machine learning. In Proceedings of the Conference on Fairness, Accountability, and Transparency. ACM, 49–58. DOI: .Google ScholarDigital Library
- Illinois General Assembly. 2019. Artificial Intelligence Video Interview Act.Google Scholar
- C. Ilvento. 2020. Metric learning for individual fairness. In 1st Symposium on Foundations of Responsible Computing, FORC 2020, Vol. 156. Schloss Dagstuhl–Leibniz-Zentrum fur Informatik, 2:1–2:11. DOI: .Google ScholarCross Ref
- S. Janson. 2018. Tail bounds for sums of geometric and exponential variables. Stat. Probab. Lett. 135, 1–6. DOI: .Google ScholarCross Ref
- J. Jarrett and S. Croft. 2018. The Science Behind the Koru Model of Predictive Hiring for Fit. Technical Report. Koru.Google Scholar
- M. C. Jensen and W. H. Meckling. 1976. Theory of the firm: Managerial behavior, agency costs and ownership structure. J. Financ. Econ. 3, 4, 305–360. DOI: .Google ScholarCross Ref
- H. Joe. 2000. Inequalities for random utility models, with applications to ranking and subset choice data. Methodol. Comput. Appl. Probab. 2, 4, 359–372. DOI: .Google ScholarDigital Library
- S. K. Johnson, D. R. Hekman, and E. T. Chan. April. 2016. If there’s only one woman in your candidate pool, there’s statistically no chance she’ll be hired. Harv. Bus. Rev. https://hbr.org/2016/04/if-theres-only-one-woman-in-your-candidate-pool-theres-statistically-no-chance-shell-be-hired.Google Scholar
- C. Jolls and C. R. Sunstein. 2006. The law of implicit bias. Calif. Law Rev. 94, 969–996. DOI: .Google ScholarCross Ref
- M. Joseph, M. Kearns, J. H. Morgenstern, and A. Roth. 2016. Fairness in learning: Classic and contextual bandits. In Advances in Neural Information Processing Systems, Vol. 29. Curran Associates. DOI: .Google ScholarCross Ref
- D. Kahneman and A. Tversky. 1977. Intuitive Prediction: Biases and Corrective Procedures. Technical Report. Decisions and Designs, Inc., Mclean, VA.Google Scholar
- E. Kamenica. 2019. Bayesian persuasion and information design. Annu. Rev. Econ. 11, 249–272. DOI: .Google ScholarCross Ref
- E. Kamenica and M. Gentzkow. 2011. Bayesian persuasion. Am. Econ. Rev. 101, 6, 2590–2615. DOI: .Google ScholarCross Ref
- M. E. Kaminski. 2019. The right to explanation, explained. Berkeley Techno. Law J. 34, 1, 189–218. DOI: .Google ScholarCross Ref
- F. Kamiran and T. Calders. 2009. Classifying without discriminating. In 2nd International Conference on Computer Control and Communication. IEEE, 1–6. DOI: .Google ScholarCross Ref
- T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma. 2012. Fairness-aware classifier with prejudice remover regularizer. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 35–50. DOI: .Google ScholarCross Ref
- S. Kannan, J. H. Morgenstern, A. Roth, B. Waggoner, and Z. S. Wu. 2018. A smoothed analysis of the greedy algorithm for the linear contextual bandit problem. In Advances in Neural Information Processing Systems, Vol. 31. Curran Associates, 2231–2241. DOI: .Google ScholarCross Ref
- A.-H. Karimi, G. Barthe, B. Balle, and I. Valera. 2020. Model-agnostic counterfactual explanations for consequential decisions. In Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, Vol. 108: Proceedings of Machine Learning Research. PMLR, 895–905. DOI: .Google ScholarCross Ref
- M. Kearns, A. Roth, and Z. S. Wu. 2017. Meritocratic fairness for cross-population selection. In Proceedings of the 34th International Conference on Machine Learning, Vol. 70. PMLR, 1828–1836.Google Scholar
- W. F. Kemble. 1916. Testing the fitness of your employees. Ind. Manage. 52, 149–164Google Scholar
- M. G. Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2, 81–93. DOI: .Google ScholarCross Ref
- S. Kerr. 1975. On the folly of rewarding A, while hoping for B. Acad. Manage. J. 18, 4, 769–783. DOI: .Google ScholarCross Ref
- L. M. Khan and D. E. Pozen. 2019. A skeptical view of information fiduciaries. Harv. Law Rev. 133, 2, 497–541.Google Scholar
- M. P. Kim, A. Korolova, G. N. Rothblum, and G. Yona. 2020. Preference-informed fairness. In 11th Innovations in Theoretical Computer Science Conference, Vol. 151. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 16:1–16:23.Google Scholar
- P. T. Kim. 2016. Data-driven discrimination at work. William Mary Law Rev. 58, 3, 857–936.Google Scholar
- P. T. Kim. 2017. Auditing algorithms for discrimination. Univ. Pa. Law Rev. Online 166, 1, 189.Google Scholar
- P. T. Kim. 2018. Big data and artificial intelligence: New challenges for workplace equality. Univ. Louisv. Law Rev. 57, 2, 313–328.Google Scholar
- P. T. Kim. 2020. Manipulating opportunity. Va. Law Rev. 106, 4, 867–935.Google Scholar
- B. Kiviat. 2019. Prediction and the Moral Order: Contesting Fairness in Consumer Data Capitalism. Ph.D. thesis. Harvard University.Google Scholar
- R. F. Kizilcec and H. Lee. 2022. Algorithmic fairness in education. In The Ethics in Artificial Intelligence in Education. Routledge. DOI: .Google ScholarCross Ref
- J. Kleinberg and M. Raghavan. 2018. Selection problems in the presence of implicit bias. In 9th Innovations in Theoretical Computer Science Conference, Vol. 94. Schloss Dagstuhl–Leibniz-Zentrum fur Informatik, 33:1–33:17. DOI: .Google ScholarCross Ref
- J. Kleinberg and M. Raghavan. 2020. How do classifiers induce agents to invest effort strategically? ACM Trans. Econ. Comput. 8, 4, 1–23. DOI: .Google ScholarDigital Library
- J. Kleinberg and M. Raghavan. 2021. Algorithmic monoculture and social welfare. Proc. Natl. Acad. Sci. U. S. A. 118, 22, e2018340118. DOI: .Google ScholarCross Ref
- R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma. 2010. Regret bounds for sleeping experts and bandits. Mach. Learn. 80, 245–272. DOI: .Google ScholarDigital Library
- J. Kleinberg, S. Mullainathan, and M. Raghavan. 2017. Inherent trade-offs in the fair determination of risk scores. In Innovations in Theoretical Computer Science, Vol. 67. Schloss Dagstuhl–Leibniz-Zentrum fur Informatik, 43:1–43:23.Google Scholar
- J. Kleinberg, H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan. 2018. Human decisions and machine predictions. Q. J. Econ. 133, 1, 237–293. DOI: .Google ScholarCross Ref
- J. Kleinberg, J. Ludwig, S. Mullainathan, and C. R. Sunstein. 2019. Discrimination in the age of algorithms. J. Leg. Anal. 10, 113–174. DOI: .Google ScholarCross Ref
- A. Koenecke, A. Nam, E. Lake, J. Nudell, M. Quartey, Z. Mengesha, C. Toups, J. R. Rickford, D. Jurafsky, and S. Goel. 2020. Racial disparities in automated speech recognition. Proc. Natl. Acad. Sci. U. S. A. 117, 14, 7684–7689. DOI: .Google ScholarCross Ref
- D. M. Koretz. 2008. Measuring Up. Harvard University Press.Google Scholar
- D. Koretz, R. Linn, S. Dunbar, and L. Shepard. 1991. The effects of high-stakes testing on achievement: Preliminary findings about generalization across tests. In Annual Meetings of the American Educational Research Association and the National Council on Measurement in Education.Google Scholar
- R. S. S. Kramer and R. Ward. 2010. Internal facial features are signals of personality and health. Q. J. Exp. Psychol. 63, 11, 2273–2287. DOI: .Google ScholarCross Ref
- I. Kremer, Y. Mansour, and M. Perry. 2014. Implementing the “wisdom of the crowd.” J. Polit. Econ. 122, 5, 988–1012. DOI: .Google ScholarCross Ref
- J. A. Kroll, J. Huey, S. Barocas, E. W. Felten, J. R. Reidenberg, D. G. Robinson, and H. Yu. 2016. Accountable algorithms. Univ. Pa. Law Rev. 165, 3, 633.Google Scholar
- M. J. Kusner, J. R. Loftus, C. Russell, and R. Silva. 2017. Counterfactual fairness. In Advances in Neural Information Processing Systems, Vol. 30. Curran Associates.Google Scholar
- J.-J. Laffont and D. Martimort. 2009. The Theory of Incentives: The Principal–Agent Model. Princeton University Press.Google Scholar
- A. Lambrecht and C. Tucker. 2019. Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads. Manage. Sci. 65, 7, 2966–2981. DOI: .Google ScholarDigital Library
- J. Langford and T. Zhang. 2007. The epoch-greedy algorithm for contextual multi-armed bandits. In Advances in Neural Information Processing Systems (NeurIPS). Curran Associates, 817–824.Google Scholar
- J. Larson, S. Mattu, L. Kirchner, and J. Angwin. May. 2016. How we analyzed the COMPAS recidivism algorithm. ProPublica. https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm.Google Scholar
- L. Li, W. Chu, J. Langford, and R. E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th International Conference on World Wide Web (WWW ’10). ACM, 661–670. DOI: .Google ScholarDigital Library
- M. Lichman. 2013. UCI Machine Learning Repository. https://archive.ics.uci.edu.Google Scholar
- Z. C. Lipton. 2018. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue 16, 3, 31–57. DOI: .Google ScholarDigital Library
- Z. C. Lipton, J. McAuley, and A. Chouldechova. 2018. Does mitigating ML’s impact disparity require treatment disparity? In Advances in Neural Information Processing Systems, Vol. 31. Curran Associates, 8125–8135.Google Scholar
- Y. Liu, G. Radanovic, C. Dimitrakakis, D. Mandal, and D. C. Parkes. 2017. Calibrated fairness in bandits. arXiv:1707.01875, also appeared at the Workshop on Fairness, Accountability, and Transparency in Machine Learning. DOI: .Google ScholarCross Ref
- L. T. Liu, S. Dean, E. Rolf, M. Simchowitz, and M. Hardt. 2018. Delayed impact of fair machine learning. In Proceedings of the 35th International Conference on Machine Learning, Vol. 80. PMLR, 3150–3158. DOI: .Google ScholarCross Ref
- M. Lopez and J. Marengo. 2011. An upper bound for the expected difference between order statistics. Math. Mag. 84, 5, 365–369. DOI: .Google ScholarCross Ref
- Y. Lou, R. Caruana, and J. Gehrke. 2012. Intelligible models for classification and regression. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’12). ACM, 150–158. DOI: .Google ScholarDigital Library
- T. Lu and C. Boutilier. 2011. Learning Mallows models with pairwise preferences. In Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML ’11). Omnipress, 145–152.Google Scholar
- R. D. Luce. 1959. Individual Choice Behavior: A Theoretical Analysis. Wiley.Google Scholar
- G. F. Madaus and M. Clarke. 2001. The Adverse Impact of High Stakes Testing on Minority Students: Evidence from 100 Years of Test Data. Technical Report. ERIC.Google Scholar
- D. Madras, E. Creager, T. Pitassi, and R. Zemel. 2018. Learning adversarially fair and transferable representations. In Proceedings of the 35th International Conference on Machine Learning, Vol. 80, Stockholmsmässan, Stockholm, Sweden, July 10–15. PMLR, 3384–3393.Google Scholar
- R. Makhijani and J. Ugander. 2019. Parametric models for intransitivity in pairwise rankings. In Proceedings of the World Wide Web Conference (WWW ’19). ACM, 3056–3062. DOI: .Google ScholarDigital Library
- G. Malgieri and G. Comandé. 2017. Why a right to legibility of automated decision-making exists in the General Data Protection Regulation. Int. Data Priv. Law 7, 4, 243–265. DOI: .Google ScholarCross Ref
- H. J. Malik. 1966. Exact moments of order statistics from the Pareto distribution. Scand. Actuar. J. 1966, 3–4, 144–157. DOI: .Google ScholarCross Ref
- C. L. Mallows. 1957. Non-null ranking models. I. Biometrika 44, 1–2, 114–130. DOI: .Google ScholarCross Ref
- F. Manjoo. 2019. This summer stinks. But at least we’ve got “Old Town Road.” New York Times.Google Scholar
- C. F. Manski. 1977. The structure of random utility models. Theory Decis. 8, 3, 229–254. DOI: .Google ScholarCross Ref
- Y. Mansour, A. Slivkins, and V. Syrgkanis. 2015. Bayesian incentive-compatible bandit exploration. In Proceedings of the 16th ACM Conference on Economics and Computation (EC ’15). ACM, 565–582. DOI: .Google ScholarDigital Library
- Y. Mansour, A. Slivkins, and Z. S. Wu. 2018. Competing bandits: Learning under competition. In Proceedings of the 9th Innovations in Theoretical Computer Science (ITCS), Vol. 94. Schloss Dagstuhl–Leibniz-Zentrum fur Informatik, 48:1–48:27. DOI: .Google ScholarCross Ref
- A. Mariotti. 2017. Talent Acquisition Benchmarking Report. Technical Report. Society for Human Resource Management. http://web.archive.org/web/20230207163352/https://www.shrm.org/hr-today/trends-and-forecasting/research-and-surveys/Documents/2017-Talent-Acquisition-Benchmarking.pdf.Google Scholar
- D. Martens and F. Provost. 2014. Explaining data-driven document classifications. MIS Q. 38, 1, 73–100. DOI: .Google ScholarCross Ref
- R. P. McAfee and J. McMillan. 1986. Bidding for contracts: A principal–agent analysis. Rand J. Econ. 17, 3, 326–338. DOI: .Google ScholarCross Ref
- M. A. Mcdaniel, S. Kepes, and G. C. Banks. 2011. The Uniform Guidelines are a detriment to the field of personnel selection. Ind. Organ. Psychol. 4, 4, 494–514. DOI: .Google ScholarCross Ref
- N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. 2021. A survey on bias and fairness in machine learning. ACM Comput. Surv. 54, 1–35. DOI: .Google ScholarDigital Library
- I. Mendoza and L. A. Bygrave. 2017. The right not to be subject to automated decisions based on profiling. In EU Internet Law. Springer, 77–98. DOI: .Google ScholarCross Ref
- J. Miller, S. Milli, and M. Hardt. 2020. Strategic classification is causal modeling in disguise. In Proceedings of the 37th International Conference on Machine Learning, Vol. 119. PMLR, 6917–6926.Google Scholar
- S. Milli, J. Miller, A. D. Dragan, and M. Hardt. 2019. The social cost of strategic classification. In Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* ’19). ACM, 230–239. DOI: .Google ScholarDigital Library
- J. P. Mills. 1926. Table of the ratio: Area to bounding ordinate, for any portion of normal curve. Biometrika 18, 3–4, 395–400. DOI: .Google ScholarCross Ref
- M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D. Raji, and T. Gebru. 2019. Model cards for model reporting. In Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* ’19). ACM, 220–229. DOI: .Google ScholarDigital Library
- A. Morse and K. Pence. 2020. Technological Innovation and Discrimination in Household Finance. Technical Report 26739. National Bureau of Economic Research, Cambridge, MA. DOI: .Google ScholarCross Ref
- R. K. Mothilal, A. Sharma, and C. Tan. 2020. Explaining machine learning classifiers through diverse counterfactual explanations. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* ’20). ACM, 607–617. DOI: .Google ScholarDigital Library
- H. Munsterberg. 1998. Psychology and Industrial Efficiency, Vol. 49. A&C Black.Google Scholar
- I. B. Myers. 1962. The Myers–Briggs Type Indicator. Consulting Psychologists Press. DOI: .Google ScholarCross Ref
- B. K. Natarajan. 1995. Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 2, 227–234. DOI: .Google ScholarDigital Library
- National Research Council. 1989. Fairness in Employment Testing: Validity Generalization, Minority Issues, and the General Aptitude Test Battery. The National Academies Press. DOI: .Google ScholarCross Ref
- National Research Council. 2013. New Directions in Assessing Performance Potential of Individuals and Groups: Workshop Summary. The National Academies Press. DOI: .Google ScholarCross Ref
- D. Neumark, R. J. Bank, and K. D. Van Nort. Sex discrimination in restaurant hiring: An audit study. Q. J. Econ. 111, 3, 915–941, 1996. DOI: .Google ScholarCross Ref
- New York City Council. 2021. A Local Law to Amend the Administrative Code of the City of New York, in Relation to the Sale of Automated Employment Decision Tools. https://legistar.council.nyc.gov/LegislationDetail.aspx?ID=4344524&GUID=B051915D-A9AC-451E-81F8-6596032FA3F9&Options=Advanced&Search.Google Scholar
- A. Niculescu-Mizil and R. Caruana. 2005. Predicting good probabilities with supervised learning. In Proceedings of the 22nd International Conference on Machine Learning (ICML ’05). ACM, 625–632. DOI: .Google ScholarDigital Library
- H. Nissenbaum. 2009. Privacy in Context: Technology, Policy, and the Integrity of Social Life. Stanford University Press.Google ScholarDigital Library
- S. U. Noble. 2018. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press.Google Scholar
- W. T. Norman. 1963. Toward an adequate taxonomy of personality attributes: Replicated factors structure in peer nomination personality ratings. J. Abnorm. Soc. Psychol. 66, 6, 574–583. DOI: .Google ScholarCross Ref
- Z. Obermeyer and S. Mullainathan. 2019. Dissecting racial bias in an algorithm that guides health decisions for 70 million people. In Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* ’19). ACM, 89. DOI: .Google ScholarDigital Library
- N. G. Packin and Y. Lev-Aretz. 2016. On social credit and the right to be unnetworked. Columbia Bus. Law Rev. 2016, 2, 339–425. DOI: .Google ScholarCross Ref
- Y. Papanastasiou, K. Bimpikis, and N. Savva. 2018. Crowdsourcing exploration. Manage. Sci. 64, 4, 1727–1746. DOI: .Google ScholarDigital Library
- C. Passariello. 27 September. 2016. Tech firms borrow football play to increase hiring of women. Wall Street J. https://www.wsj.com/articles/tech-firms-borrow-football-play-to-increase-hiring-of-women-1474963562.Google Scholar
- S. Passi and S. Barocas. 2019. Problem formulation and fairness. In Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* ’19). ACM, 39–48. DOI: .Google ScholarDigital Library
- M. V. Pauly. 1968. The economics of moral hazard: Comment. Am. Econ. Rev. 58, 3, 531–537.Google Scholar
- D. Pedreshi, S. Ruggieri, and F. Turini. 2008. Discrimination-aware data mining. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’08). ACM, 560–568. DOI: .Google ScholarDigital Library
- E. Perez-Richet and V. Skreta. 2022. Test design under falsification. J. Econom. Soc. 90, 1109–1142. DOI: .Google ScholarCross Ref
- J. Platt. 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 10, 3, 61–74.Google Scholar
- G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger. 2017. On fairness and calibration. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS ’17). Curran Associates, 5684–5693.Google Scholar
- J. Porter. 2020. UK ditches exam results generated by biased algorithm after student protests. The Verge.Google Scholar
- J. F. Power and R. F. Follett. 1987. Monoculture. Sci. Am. 256, 3, 78–87.Google ScholarCross Ref
- J. Powles and H. Nissenbaum. 2018. The seductive diversion of ‘solving’ bias in artificial intelligence. Medium.com.Google Scholar
- R. Puri. 2018. Mitigating bias in AI models. IBM Research Blog.Google Scholar
- L. Quillian, D. Pager, O. Hexel, and A. H. Midtbøen. 2017. Meta-analysis of field experiments shows no change in racial discrimination in hiring over time. Proc. Natl. Acad. Sci. U. S. A. 114, 41, 10870–10875. DOI: .Google ScholarCross Ref
- S. Ragain and J. Ugander. 2016. Pairwise choice Markov chains. In Advances in Neural Information Processing Systems, 3198–3206.Google Scholar
- M. Raghavan. 2020. Testimony on New York City Int. No. 1894.Google Scholar
- M. Raghavan. 2021. The Societal Impacts of Algorithmic Decision-Making. Ph.D. thesis. Cornell University. DOI: .Google ScholarCross Ref
- M. Raghavan and S. Barocas. 2019. Challenges for Mitigating Bias in Algorithmic Hiring. Brookings.Google Scholar
- M. Raghavan, A. Slivkins, J. V. Wortman, and Z. S. Wu. 2018. The externalities of exploration and how data diversity helps exploitation. In Proceedings of the 31st Conference on Learning Theory, Vol. 75. PMLR, 1724–1738.Google Scholar
- M. Raghavan, S. Barocas, J. Kleinberg, and K. Levy. 2020. Mitigating bias in algorithmic hiring: Evaluating claims and practices. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* ’20). ACM, 469–481. DOI: .Google ScholarDigital Library
- I. D. Raji and J. Buolamwini. 2019. Actionable auditing: Investigating the impact of publicly naming biased performance results of commercial AI products. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’19). ACM, 429–435. DOI: .Google ScholarDigital Library
- M. Raub. 2018. Bots, bias and big data: Artificial intelligence, algorithmic bias and disparate impact liability in hiring practices. Ark. Law Rev. 71, 529.Google Scholar
- Regulation B. 1975. 12 C.F.R. § 1002 et seq.Google Scholar
- J. H. Reiman. 1976. Privacy, intimacy, and personhood. Philos. Public Aff. 6, 26–44.Google Scholar
- L. Rhue. 2018. Racial influence on automated perceptions of emotions. Available at SSRN 3281765. DOI: .Google ScholarCross Ref
- P. A. Riach and J. Rich. 2002. Field experiments of discrimination in the market place. Econ. J. 112, 483, F480–F518. DOI: .Google ScholarCross Ref
- M. T. Ribeiro, S. Singh, and C. Guestrin. 2016. “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16). ACM, 1135–1144. DOI: .Google ScholarDigital Library
- P. Rigollet and A. Zeevi. 2010. Nonparametric bandits with covariates. In Proceedings of the Conference on Learning Theory (COLT). DOI: .Google ScholarCross Ref
- J. Roach. 2018. Microsoft improves facial recognition technology to perform well across all skin tones, genders. The AI Blog.Google Scholar
- D. Rodina and J. Farragut. 2020. Inducing effort through grades. CRC TR 224 Discussion Paper Series crctr224_2020_221. University of Bonn and University of Mannheim, Germany.Google Scholar
- M. C. Rodriguez and Y. Maeda. 2006. Meta-analysis of coefficient alpha. Psychol. Methods 11, 3, 306–322. DOI: .Google ScholarCross Ref
- S. A. Ross. 1973. The economic theory of agency: The principal’s problem. Am. Econ. Rev. 63, 2, 134–139.Google Scholar
- E. Ruda and L. E. Albright. 1968. Racial differences on selection instruments related to subsequent job performance. Pers. Psychol. 21, 1, 31–41. DOI: .Google ScholarCross Ref
- C. Russell. 2019. Efficient search for diverse coherent explanations. In Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* ’19). ACM, 20–28. DOI: .Google ScholarDigital Library
- C. Russell, M. J. Kusner, J. R. Loftus, and R. Silva. 2017. When worlds collide: Integrating different counterfactual assumptions in fairness. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS ’17), Vol. 30. Curran Associates, 6417–6426. DOI: .Google ScholarDigital Library
- E. Salas. 2011. Reply to request for public comment on plan for retrospective analysis of significant regulations pursuant to Executive Order 13563.Google Scholar
- M. J. Salganik, P. S. Dodds, and D. J. Watts. 2006. Experimental study of inequality and unpredictability in an artificial cultural market. Science 311, 5762, 854–856. DOI: .Google ScholarCross Ref
- M. R. Sampford. 1953. Some inequalities on Mill’s ratio and related functions. Ann. Math. Stat. 24, 1, 130–132. DOI: .Google ScholarCross Ref
- J. Sanchez-Monedero, L. Dencik, and L. Edwards. 2020. What does it mean to solve the problem of discrimination in hiring? Social, technical and legal perspectives from the UK on automated hiring systems. In Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* ’20). ACM, 458–468. DOI: .Google ScholarDigital Library
- H. Schuler, J. L. Farr, and M. Smith. 1993. Personnel Selection and Assessment: Individual and Organizational Perspectives. Psychology Press.Google Scholar
- A. D. Selbst. 2019. A new HUD rule would effectively encourage discrimination by algorithm. Slate. https://slate.com/technology/2019/08/hud-disparate-impact-discrimination-algorithm.html.Google Scholar
- A. D. Selbst and J. Powles. 2017. Meaningful information and the right to explanation. Int. Data Priv. Law 7, 4, 233–242. DOI: .Google ScholarCross Ref
- A. D. Selbst and S. Barocas. 2018. The intuitive appeal of explainable machines. Fordham Law Rev. 87, 3, 1085. https://ir.lawnet.fordham.edu/flr/vol87/iss3/11.Google Scholar
- A. D. Selbst, D. Boyd, S. A. Friedler, S. Venkatasubramanian, and J. Vertesi. 2019. Fairness and abstraction in sociotechnical systems. In Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* ’19). ACM, 59–68. DOI: .Google ScholarDigital Library
- Senate Report No. 94-589, 1976.Google Scholar
- H. Shaban. 13 June. 2017. What is the “Rooney Rule” that Uber just adopted? Washington Post.Google Scholar
- Y. Shavit, B. Edelman, and B. Axelrod. 2020. Causal strategic linear regression. In Proceedings of the 37th International Conference on Machine Learning (ICML ’20), Vol. 119. PMLR, 8676–8686.Google Scholar
- E. W. Shoben. 1978. Differential pass–fail rates in employment testing: Statistical proof under Title VII. Harvard Law Rev. 91, 4, 793–813. DOI: .Google ScholarCross Ref
- E. W. Shoben. 1979. In defense of disparate impact analysis under Title VII: A reply to Dr. Cohn. Indiana Law J. 55, 3, 515.Google Scholar
- J. Sidanius and M. Crane. 1989. Job evaluation and gender: The case of university faculty. J. Appl. Soc. Psychol. 19, 2, 174–197. DOI: .Google ScholarCross Ref
- J. Skeem, N. Scurich, and J. Monahan. 2020. Impact of risk assessment on judges’ fairness in sentencing relatively poor defendants. Law Hum. Behav. 44, 1, 51–59. DOI: .Google ScholarCross Ref
- Society for Industrial and Organizational Psychology. 2018. Principles for the Validation and Use of Personnel Selection Procedures. American Psychological Association.Google Scholar
- D. J. Solove. 2006. A taxonomy of privacy. Univ. PA Law Rev. 154, 477–560. DOI: .Google ScholarCross Ref
- M. Spence. 1973. Job market signaling. Q. J. Econ. 87, 3, 355–374. DOI: .Google ScholarCross Ref
- D. A. Spielman and S.-H. Teng. 2004. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. J. ACM 51, 3, 385–463. DOI: .Google ScholarDigital Library
- M. Stevenson. 2018. Assessing risk assessment in action. Minn. Law Rev. 103, 303. DOI: .Google ScholarCross Ref
- J. E. Stiglitz. 1974. Incentives and risk sharing in sharecropping. Rev. Econ. Stud. 41, 2, 219–255. DOI: .Google ScholarCross Ref
- D. Strauss. 1979. Some results on random utility models. J. Math. Psychol. 20, 1, 35–52. DOI: .Google ScholarCross Ref
- L. Sweeney. 2013. Discrimination in online ad delivery. Commun. ACM 56, 5, 44–54. DOI: .Google ScholarDigital Library
- P. Tambe, P. Cappelli, and V. Yakubovich. 2019. Artificial intelligence in human resources management: Challenges and a path forward. Calif. Manage. Rev. 61, 4, 15–42. DOI: .Google ScholarCross Ref
- I. Taneva. 2019. Information design. Am. Econ. J. Microecon. 11, 4, 151–185. DOI: .Google ScholarCross Ref
- W. Tang, C.-J. Ho, and Y. Liu. 13–15 April. 2021. Linear models are robust optimal under strategic behavior. In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, Vol. 130: Proceedings of Machine Learning Research. PMLR, 2584–2592.Google Scholar
- P. Tantri. 2020. Fintech for the poor: Financial intermediation without discrimination. Rev. Financ. 25, 2, 561–593. DOI: .Google ScholarCross Ref
- L. M. Terman. 1916. The Measurement of Intelligence: An Explanation of and a Complete Guide for the Use of the Stanford Revision and Extension of the Binet–Simon Intelligence Scale. Houghton Mifflin.Google Scholar
- L. L. Thurstone. 1927. A law of comparative judgment. Psychol. Rev. 34, 4, 273. DOI: .Google ScholarCross Ref
- F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. 2016. Stealing machine learning models via prediction APIs. In Proceedings of the 25th USENIX Conference on Security Symposium (SEC ’16). USENIX Association, 601–618.Google Scholar
- F. G. Tricomi and A. Erdélyi. 1951. The asymptotic expansion of a ratio of gamma functions. Pacific J. Math. 1, 1, 133–142.Google ScholarCross Ref
- J. A. Tropp. 2012. User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12, 4, 389–434. DOI: .Google ScholarCross Ref
- A. B. Tsybakov. 2009. Introduction to Nonparametric Estimation. Springer. DOI: .Google ScholarCross Ref
- L. E. Tyler. 1947. The Psychology of Human Differences. D Appleton-Century Company.Google Scholar
- T. R. Tyler. 2006. Why People Obey the Law. Princeton University Press.Google Scholar
- E. L. Uhlmann and G. L. Cohen. 2005. Constructed criteria: Redefining merit to justify discrimination. Psychol. Sci. 16, 6, 474–480. DOI: .Google ScholarCross Ref
- U.S. Congress. 1964. Civil Rights Act.Google Scholar
- U.S. Congress. 1990. Americans with Disabilities Act.Google Scholar
- U.S. Congress. 1991. Civil Rights Act.Google Scholar
- US Department of Housing and Urban Development. 2018. Charge of discrimination, HUD v. Facebook. Retrieved from https://archives.hud.gov/news/2019/HUD_v_Facebook.pdf.Google Scholar
- US Department of Housing and Urban Development. 2019. HUD’s implementation of the Fair Housing Act’s disparate impact standard. Retrieved from https://www.federalregister.gov/documents/2019/08/19/2019-17542/huds-implementation-of-the-fair-housing-acts-disparate-impact-standard.Google Scholar
- B. Ustun, A. Spangher, and Y. Liu. 2019. Actionable recourse in linear classification. In Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT ’19). ACM, 10–19. DOI: .Google ScholarDigital Library
- L. van den Bergh, E. Denessen, L. Hornstra, M. Voeten, and R. W. Holland. 2010. The implicit prejudiced attitudes of teachers: Relations to teacher expectations and the ethnic achievement gap. Am. Educ. Res. J. 47, 2, 497–527. DOI: .Google ScholarCross Ref
- S. Wachter, B. Mittelstadt, and L. Floridi. 2017. Why a right to explanation of automated decision-making does not exist in the General Data Protection Regulation. Int. Data Priv. Law 7, 2, 76–99. DOI: .Google ScholarCross Ref
- S. Wachter, B. Mittelstadt, and C. Russell. 2018. Counterfactual explanations without opening the black box: Automated decisions and the GDPR. Harv. J. Law Technol. 31, 2, 841–887. DOI: .Google ScholarCross Ref
- C. Wenneras and A. Wold. 1997. Nepotism and sexism in peer-review. Nature 387, 341–343. DOI: .Google ScholarCross Ref
- D. R. Williams and S. A. Mohammed. 2009. Discrimination and racial disparities in health: Evidence and needed research. J. Behav. Med. 32, 1, 20–47. DOI: .Google ScholarCross Ref
- C. Wilson, A. Ghosh, S. Jiang, A. Mislove, L. Baker, J. Szary, K. Trindel, and F. Polli. 2021. Building and auditing fair algorithms: A case study in candidate screening. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21). ACM, 666–677. DOI: .Google ScholarDigital Library
- B. Woodworth, S. Gunasekar, M. I. Ohannessian, and N. Srebro. 07–10 July. 2017. Learning non-discriminatory predictors. In Proceedings of the 2017 Conference on Learning Theory, Vol. 65. PMLR, 1920–1953.Google Scholar
- K. Yang and J. Stoyanovich. 2017. Measuring fairness in ranked outputs. In Proceedings of the 29th International Conference on Scientific and Statistical Database Management (SSDBM ’17). ACM, 22, 1–6. DOI: .Google ScholarDigital Library
- J. I. Yellott Jr. 1977. The relationship between Luce’s choice axiom, Thurstone’s theory of comparative judgment, and the double exponential distribution. J. Math. Psychol. 15, 2, 109–144. DOI: .Google ScholarCross Ref
- J. W. Young. 2001. Differential Validity, Differential Prediction, and College Admission Testing: A Comprehensive Review and Analysis. Research Report No. 2001-6. College Entrance Examination Board.Google Scholar
- B. Zadrozny and C. Elkan. 2001. Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In Proceedings of the 18th International Conference on Machine Learning (ICML ’01). Morgan Kaufmann, 609–616.Google Scholar
- M. B. Zafar, I. Valera, M. G. Rodriguez, and K. P. Gummadi. 2017a. Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. In Proceedings of the 26th International Conference on World Wide Web (WWW ’17). IW3C2, 1171–1180. DOI: .Google ScholarDigital Library
- M. B. Zafar, I. Valera, M. G. Rodriguez, and K. P. Gummadi. 20–22 April. 2017b. Fairness constraints: Mechanisms for fair classification. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Vol. 54. PMLR, 962–970. DOI: .Google ScholarCross Ref
- A. Zapechelnyuk. 2020. Optimal quality certification. Am. Econ. Rev. Insights 2, 2, 161–176. DOI: .Google ScholarCross Ref
- T. Z. Zarsky. 2008. Law and online social networks: Mapping the challenges and promises of user-generated information flows. Fordham Intellect. Prop. Media Entertain. Law J. 18, 3, 741–783.Google Scholar
- M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. Baeza-Yates. 2017. FA*IR: A Fair Top-k Ranking algorithm. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM ’17). ACM, 1569–1578. DOI: .Google ScholarDigital Library
- R. S. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. 2013. Learning fair representations. In Proceedings of the 30th International Conference on Machine Learning, Vol. 28. PMLR, 325–333.Google Scholar
- Z. Zhao, T. Villamil, and L. Xia. 2018. Learning mixtures of random utility models. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence. AAAI Press, 4530–4538. DOI: .Google ScholarCross Ref
- D. Zhou, J. Luo, V. M. B. Silenzio, Y. Zhou, J. Hu, G. Currier, and H. Kautz. 2015. Tackling mental health by integrating unobtrusive multimodal sensing. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI ’15). AAAI Press, 1401–1408. DOI: .Google ScholarCross Ref
- M. Ziewitz. 2019. Rethinking gaming: The ethical work of optimization in web search engines. Soc. Stud. Sci. 49, 5, 707–731. DOI: .Google ScholarCross Ref
Index Terms
- The Societal Impacts of Algorithmic Decision-Making
Recommendations
Decision making process: typology, intelligence, and optimization
Decision making is concerned with evaluating and/or ranking possible alternatives of action. In this paper, we develop a model for the process of decision making. Understanding the decision process can provide insights into how humans make decisions, ...
The value of responsibility gaps in algorithmic decision-making
AbstractMany seem to think that AI-induced responsibility gaps are morally bad and therefore ought to be avoided. We argue, by contrast, that there is at least a pro tanto reason to welcome responsibility gaps. The central reason is that it can be bad for ...